<span id="plx27"><var id="plx27"></var></span>
<dfn id="plx27"><var id="plx27"></var></dfn>
  • <span id="plx27"><code id="plx27"><input id="plx27"></input></code></span>
    <menu id="plx27"></menu><menuitem id="plx27"><thead id="plx27"><input id="plx27"></input></thead></menuitem>
  • <label id="plx27"><code id="plx27"></code></label>
    <label id="plx27"><button id="plx27"></button></label>

    線性代數(shù)課件:矩陣的初等變換與初等矩陣

    上傳人:努力****83 文檔編號:234579511 上傳時間:2023-10-23 格式:PPT 頁數(shù):21 大?。?46.50KB
    收藏 版權申訴 舉報 下載
    線性代數(shù)課件:矩陣的初等變換與初等矩陣_第1頁
    第1頁 / 共21頁
    線性代數(shù)課件:矩陣的初等變換與初等矩陣_第2頁
    第2頁 / 共21頁
    線性代數(shù)課件:矩陣的初等變換與初等矩陣_第3頁
    第3頁 / 共21頁

    下載文檔到電腦,查找使用更方便

    30 積分

    下載資源

    還剩頁未讀,繼續(xù)閱讀

    資源描述:

    《線性代數(shù)課件:矩陣的初等變換與初等矩陣》由會員分享,可在線閱讀,更多相關《線性代數(shù)課件:矩陣的初等變換與初等矩陣(21頁珍藏版)》請在裝配圖網上搜索。

    1、2.5 矩陣的初等變換與初等矩陣1.初等變換初等變換2.初等矩陣初等矩陣 初等矩陣的作用、初等矩陣的可逆性3.求逆矩陣的初等行變換法求逆矩陣的初等行變換法5.1 初等變換 交換第交換第i行與第行與第j行記為行記為rirj.1 5-1-1 1-2 1 3 1-9 3 7 3 8-1 1 1-2 1 3 1-9 3 7r2r4 1 5-1-1 3 8-1 1 定義定義1 對矩陣施以下列三種變換之一,稱為對矩陣施以下列三種變換之一,稱為初等變換初等變換.(1)交換矩陣的某兩行交換矩陣的某兩行(列列);(2)以數(shù)以數(shù)k 0乘矩陣的某一行乘矩陣的某一行(列列);(3)把矩陣的某一行把矩陣的某一行(列列)

    2、的的k倍加到另一行倍加到另一行(列列)上上.例如例如-1 1 3-1 交換第交換第i列與第列與第j列記為列記為cicj.1 5-1-1 1-2 1 3 1-9 3 7 3 8-1 1c1c3 5-2-9 8-1 3 7 1 1 1 1 3例如例如 定義定義1 對矩陣施以下列三種變換之一,稱為對矩陣施以下列三種變換之一,稱為初等變換初等變換.(1)交換矩陣的某兩行交換矩陣的某兩行(列列);(2)以數(shù)以數(shù)k 0乘矩陣的某一行乘矩陣的某一行(列列);(3)把矩陣的某一行把矩陣的某一行(列列)的的k倍加到另一行倍加到另一行(列列)上上.5.1 初等變換 用數(shù)用數(shù)k乘以第乘以第i行記為行記為kri.1

    3、5-1-1 1-2 1 3 1-9 3 7 3 8-1 14r2 4 4-812 1-1 5-1 1 3-9 7 3-1 8 1例如例如 定義定義1 對矩陣施以下列三種變換之一,稱為對矩陣施以下列三種變換之一,稱為初等變換初等變換.(1)交換矩陣的某兩行交換矩陣的某兩行(列列);(2)以數(shù)以數(shù)k 0乘矩陣的某一行乘矩陣的某一行(列列);(3)把矩陣的某一行把矩陣的某一行(列列)的的k倍加到另一行倍加到另一行(列列)上上.5.1 初等變換 用數(shù)用數(shù)k乘以第乘以第i列記為列記為kci.1 5-1-1 1-2 1 3 1-9 3 7 3 8-1 14c3-4 412-4 1 5-1 1-2 3 1-

    4、9 7 3 8 1例如例如 定義定義1 對矩陣施以下列三種變換之一,稱為對矩陣施以下列三種變換之一,稱為初等變換初等變換.(1)交換矩陣的某兩行交換矩陣的某兩行(列列);(2)以數(shù)以數(shù)k 0乘矩陣的某一行乘矩陣的某一行(列列);(3)把矩陣的某一行把矩陣的某一行(列列)的的k倍加到另一行倍加到另一行(列列)上上.5.1 初等變換 第第i行的行的k倍加到第倍加到第j行記為行記為rj+kri.1 5-1-1 1-2 1 3 1-9 3 7 3 8-1 1r3-3r1 1 5-1-1 1-2 1 3 1-9 3 7 0-7 2 4例如例如 定義定義1 對矩陣施以下列三種變換之一,稱為對矩陣施以下列三

    5、種變換之一,稱為初等變換初等變換.(1)交換矩陣的某兩行交換矩陣的某兩行(列列);(2)以數(shù)以數(shù)k 0乘矩陣的某一行乘矩陣的某一行(列列);(3)把矩陣的某一行把矩陣的某一行(列列)的的k倍加到另一行倍加到另一行(列列)上上.5.1 初等變換 第第i列的列的k倍加到第倍加到第j列記為列記為cj+kci.1 5-1-1 1-2 1 3 1-9 3 7 3 8-1 1c3+c1 0 2 4 2 1 5-1 1-2 3 1-9 7 3 8 1例如例如 定義定義1 對矩陣施以下列三種變換之一,稱為對矩陣施以下列三種變換之一,稱為初等變換初等變換.(1)交換矩陣的某兩行交換矩陣的某兩行(列列);(2)以

    6、數(shù)以數(shù)k 0乘矩陣的某一行乘矩陣的某一行(列列);(3)把矩陣的某一行把矩陣的某一行(列列)的的k倍加到另一行倍加到另一行(列列)上上.5.1 初等變換 定義定義2 對單位矩陣對單位矩陣E施以一次初等變換得到的矩陣稱為施以一次初等變換得到的矩陣稱為初等矩陣初等矩陣(或初等方陣)(或初等方陣).初等矩陣有下列三種:初等矩陣有下列三種:E(i,j)、E(i(k)、E(j,i(k).=E(2,4)例如,下面是幾個例如,下面是幾個4階初等矩陣:階初等矩陣:1000010000100001E=0001100000100100r2r4=E(2,4)1000010000100001E=00011000001

    7、00100c2c45.2 初等矩陣=E(3(4)1000010000100001E=00401000010000014 r3=E(3(4)1000010000100001E=00401000100000014 c3 定義定義2 對單位矩陣對單位矩陣E施以一次初等變換得到的矩陣稱為施以一次初等變換得到的矩陣稱為初等矩陣初等矩陣(或初等方陣)(或初等方陣).初等矩陣有下列三種:初等矩陣有下列三種:E(i,j)、E(i(k)、E(j,i(k).例如,下面是幾個例如,下面是幾個4階初等矩陣:階初等矩陣:5.2 初等矩陣=Er(2,4(k)1000010000100001E=010k1000001000

    8、01r2+kr4=Ec(2,4(k)1000010000100001E=10 000 001 000 1010kc2+kc4 定義定義2 對單位矩陣對單位矩陣E施以一次初等變換得到的矩陣稱為施以一次初等變換得到的矩陣稱為初等矩陣初等矩陣(或初等方陣)(或初等方陣).初等矩陣有下列三種:初等矩陣有下列三種:E(i,j)、E(i(k)、E(j,i(k).例如,下面是幾個例如,下面是幾個4階初等矩陣:階初等矩陣:5.2 初等矩陣 定理定理1 設設A是一個是一個m n矩陣矩陣,對對A施行一次初等行變換相當于在施行一次初等行變換相當于在A的左邊乘以相應的的左邊乘以相應的m階初等矩陣階初等矩陣;對對A施行

    9、一次初等列變換相當于在施行一次初等列變換相當于在A的右邊乘以相應的的右邊乘以相應的n 階初等矩陣階初等矩陣.E(1,2)A=與交換與交換A的第一行的第一行(列列)與第二行與第二行(列列)所得結果相同所得結果相同.AE(1,2)=例如例如,設設=與第三行與第三行(列列)的的2倍加到第一行倍加到第一行(列列)所得結果相同所得結果相同.=例如例如,設設E(1,3(2)A=AE(1,3(2)=定理定理1 設設A是一個是一個m n矩陣矩陣,對對A施行一次初等行變換相當于在施行一次初等行變換相當于在A的左邊乘以相應的的左邊乘以相應的m階初等矩陣階初等矩陣;對對A施行一次初等列變換相當于在施行一次初等列變換

    10、相當于在A的右邊乘以相應的的右邊乘以相應的n 階初等矩陣階初等矩陣.初等矩陣都是可逆的,且它們的逆矩陣仍是初等矩陣初等矩陣都是可逆的,且它們的逆矩陣仍是初等矩陣.初等矩陣的可逆性初等矩陣的可逆性E(j,i(k)-1=E(j,i(-k).E(i(k)-1=E(i(k-1);E(i,j)-1=E(i,j);這是因為,初等矩陣的行列式要么為這是因為,初等矩陣的行列式要么為1,要么為要么為-1,要么為要么為k(k0).其其逆陣逆陣分別為分別為:例1例例2 2 設設A可逆,可逆,A經過交換第經過交換第 i行與第行與第j行后得到行后得到B,證明證明B可逆可逆.證明:證明:由條件知,一定存在初等矩陣由條件知

    11、,一定存在初等矩陣E(i,j),使得使得B=E(i,j)A.又又A可逆,可逆,|A|0,|E(i,j)|=-1.|B|=|A|E(i,j)|0,即即B可逆可逆.6.3 求逆矩陣的初等變換方法定理定理2 若若n階矩陣階矩陣A可逆,則可以通過可逆,則可以通過初等行變換初等行變換將將A化為單位矩陣化為單位矩陣.證:證:因為因為A可逆可逆,即即|A|0,所以,所以A的第一列不全為的第一列不全為0,不妨設不妨設a11 0.將將A的第一行元素乘以的第一行元素乘以1/a11,再將變換后的第一行的再將變換后的第一行的(-ai1)倍加到第倍加到第i行,行,i=2,3,n,使第一列其他元素全化為零,得如下形式矩陣

    12、使第一列其他元素全化為零,得如下形式矩陣B1:由定理由定理1 1知,知,其中其中Fi是對應初等矩陣是對應初等矩陣.一直進行下去,最終把一直進行下去,最終把A化成了化成了單位矩陣單位矩陣E.同理可得同理可得B2:即即B2的第二行第二列元素化為的第二行第二列元素化為1,第二列的其它元素全化為零第二列的其它元素全化為零.利用初等行變換求逆矩陣的方法利用初等行變換求逆矩陣的方法(要求:熟練掌握要求:熟練掌握)構造一個構造一個 n2n 矩陣矩陣(A|E),對矩陣對矩陣(A|E)作初等行變換,當作初等行變換,當左部左部A變成單位矩陣變成單位矩陣E時,右部單位矩陣時,右部單位矩陣E則變成則變成A-1-1.即

    13、即 推論推論 方陣方陣A可逆的充分必要條件是可逆的充分必要條件是A可以表示為有限個初等矩陣可以表示為有限個初等矩陣的乘積的乘積.即若即若,則則而而就是說,當通過初等行變換將矩陣就是說,當通過初等行變換將矩陣A變成變成E時,經過同樣的變換把時,經過同樣的變換把E變成變成了了A-1.于是有于是有,即即解:解:例例3.3.若矩陣若矩陣A可逆,則矩陣可逆,則矩陣(A|E)可經初等行變換化為可經初等行變換化為(E|A-1).-0.5r2-r3例例4 4求矩陣求矩陣A=的逆矩陣的逆矩陣.12-30 1210-512-30 1210-510 00 1000 1解:解:1 0 1 1 0 0 0 1-2-2 1 0 0 2-2 3 0 1r2-2r1r3+3r1 1 0 1 1 0 0 0 1-2-2 1 0 0 0 2 7-2 1r3-2r2 1 0 0-2.5 1-0.5 0 1 0 5-1 1 0 0 2 7-2 1r2+r3r1-0.5r3 1 0 0-2.5 1-0.5 0 1 0 5-1 1 0 0 1 3.5-1 0.5,-2.5 5 3.5 1-1-1-0.5 1 0.5A-1=.(A E)=r30.5 若矩陣若矩陣A可逆,則矩陣可逆,則矩陣(A|E)可經初等行變換化為可經初等行變換化為(E|A-1).作業(yè)作業(yè)作業(yè)作業(yè):8484頁頁頁頁 15(1)15(1);1717

    展開閱讀全文
    溫馨提示:
    1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
    2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
    3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
    4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
    5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
    6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
    7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

    相關資源

    更多
    正為您匹配相似的精品文檔
    關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

    copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

    備案號:ICP2024067431-1 川公網安備51140202000466號


    本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!

    欧美久久久一区二区三区,国产精品亚洲一区二区无码,亚洲国产精品综合久久20声音,亚洲国产精品无码久久久蜜芽
    <span id="plx27"><var id="plx27"></var></span>
    <dfn id="plx27"><var id="plx27"></var></dfn>
  • <span id="plx27"><code id="plx27"><input id="plx27"></input></code></span>
    <menu id="plx27"></menu><menuitem id="plx27"><thead id="plx27"><input id="plx27"></input></thead></menuitem>
  • <label id="plx27"><code id="plx27"></code></label>
    <label id="plx27"><button id="plx27"></button></label>